

IMPULSVORTRAG

Gasifizierung von biogenen Reststoffen zur Herstellung eines H2-reichen Synthesegases

Integration of gasification into the hydrogen and carbon cycle

FKZ: 03EE5044A

Federal Ministry for Economic Affairs and Climate Action

- > Lead: TU Darmstadt
- 10/2020 09/2024
- Budget: 11.1 M€
- Development and evaluation of technologies for the flexible production (polygeneration) of electricity and synthetic energy sources from residual materials

Erection of the pilot plant in 2009

September

Waste-to-value

Prof. Dr.-Ing. Bernd Epple, TU Darmstadt, Institute for Energy Systems & Technology

1 MW modular pilot plant

circulating fluidized bed reactors						
CFB 600		CFB 400				
	dimensions					
600 mm	inner diameter	400 mm				
1300 mm	outer diameter	1000 mm				
8 m	height	11 m				
	process parameters					
650 … 1050 °C	temperature	850 1000 °C				
atmospheric	pressure	atmospheric				
3 … 6 m/s	velocity	0.5 … 6 m/s				

Gasification of residues

coupled reactors

- > Dual fluidized bed gasification (DFB)
- > Chemical looping gasification (CLG)

single reactor

- > High-Temperature-Winkler gasification (HTW)
- Circulating Fluidized Bed gasification (CFB)

Bubbling bed gasification @EST 100 % sewage **Fischer**wood sludge 100 % Tropsch SRF modification of the longterm methanol modular pilot plant SRF (165 h) inclusive gas cleaning unit over 8 years $\mathbf{\Sigma}$ • of experience 2020 2017 2018 2019 2021 2022 2024 2015 2016 2023 **VFRFNA FABIENE** commissioning of GIDARA ENERGY HTW gasification with Rhenish brown coal **C**oal 16 test campaigns biomass 2040 h (85 d) of gasification SRF sewage sludge

Experience

type of feedstock	lignite	pine forest residue	sewage sludge	(solid recovered fuel)
pre-treatment	grained	pelletized	dried	pelletized
operation mode	full-chain	full-chain	stand-alone	stand-alone
thermal load	350-500 kW	340-460 kW	400 kW	400-440 kW
netto syngas operation time	> 1,000 h	138 h	72 h	171 h
product	FT and methanol	methanol	syngas	syngas

Results 11% CO 16% 37% H_2 H_2O CH_4 4% CO_2 flushing CO₂ raw syngas mol% without dust 32%

feedstock	pine forest residue	
mass load	83	kg/h
thermal power	425	kW _{th}
efficiency*	64	%
lambda	0.33	
syngas	200	Nm³/h

> CO_2 is used as a purge for measuring devices and feed supply

- > validation of models through test data
- > *cold gas efficiency: chemical energy syngas/ thermal input
 - pilot scale: 64%
 - industrial scale: 81% (upscaled models)

Chemical looping gasification

Results

industrial wood pellets pine forest residue pellets

wheat straw pellets

- > 100 t of biomass converted to syngas
- > 150 h of operation with sub-stoichiometric process control
- 800 Nm³/h of syngas
- ~40% of hydrogen and carbon monoxide
- 8-12% of C1 and C2

Outlook

✓ Bubbling bed gasification:

longterm experience with a wide range of feedstock including

- several types of biomass
- and SRF

✓ Chemical looping gasification

- Proof of Concept with biomass at pilot scale
- April 2024: test campaign using 100 % SRF and fermentation residues
- more operational experience to be gained

X Techno Economic Assessment of Industrial Scale

- \rightarrow scale up of validated models to industrial scale
- ightarrow techno-economical assessment and life cycle assessment

Prof. Dr.-Ing. Bernd Epple

Energy Systems and Technology Mail: bernd.epple@est.tu-darmstadt.de Phone: +49 6151 16 23001 Otto-Berndt-Straße 2, 64287 Darmstadt / Germany www.est.tu-darmstadt.de

